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DEVELOPMENT AND APPLICATION OF A MODULAR

WATERSHED‐SCALE HYDROLOGIC MODEL

USING THE OBJECT MODELING SYSTEM:
RUNOFF RESPONSE EVALUATION

J. C. Ascough II,  O. David,  P. Krause,  G. C. Heathman,  S. Kralisch,  M. Larose,  L. R. Ahuja,  H. Kipka

ABSTRACT. This study reports on the integration of the J2K model (an object‐oriented, hydrological system for fully distributed
simulation of the water balance in large watersheds) under the Object Modeling System (OMS) environmental modeling
framework and subsequent evaluation of OMS‐J2K performance in the Cedar Creek watershed (CCW) in northeastern
Indiana. The CCW is one of 14 benchmark watersheds in the USDA‐ARS Conservation Effects Assessment Project (CEAP)
watershed assessment study. Two input parameter sets were developed for OMS‐J2K evaluation: (1) a “base parameter set”
with parameter values taken from previous simulation studies where J2K was applied to watersheds with characteristics
similar to the CCW, and (2) an “adjusted parameter set” with modifications to input parameters related to
evapotranspiration, soil water storage, and soil water lateral flow. Comparisons of daily, average monthly, and annual
average simulated and observed flows for the 1997‐2005 simulation period using the base parameter set resulted in
Nash‐Sutcliffe efficiency (ENS), root mean square deviation (RMSD), and relative error (PBIAS) coefficients of 0.34 to 0.48
for ENS, 1.50 to 8.79 m3 s‐1 for RMSD, and ‐18.43% for PBIAS. All statistical evaluation coefficients improved for the adjusted
parameter set (e.g., 0.44 to 0.59 for ENS, 0.87 to 7.73 m3 s‐1 for RMSD, and ‐8.59% for PBIAS). The ranges of ENS and PBIAS
values for uncalibrated or manually adjusted streamflow predictions in this study (using both parameter sets) were similar
to others reported in the literature for various watershed models. This study represents the first attempt to develop and apply
a complex natural resource system model under the OMS. The results indicate that the OMS‐J2K watershed model was able
to reproduce the hydrological dynamics of the CCW and should serve as a foundation on which to build a more comprehensive
model to better quantify water quantity and quality at the watershed scale. In particular, the topological routing scheme
employed by OMS‐J2K (thus allowing the simulation of lateral processes vital for the modeling of runoff concentration
dynamics) is much more robust than the quasi‐distributed routing schemes used by other watershed‐scale natural resource
models and represents a noteworthy advancement in hydrological modeling toward deriving suitable conservation
management scenarios.

Keywords. Fully distributed modeling, Hydrologic modeling, Model evaluation, Object Modeling System, Streamflow,
Watershed.

he problems facing both users and developers of en‐
vironmental models are becoming increasingly
complex. Environmental management issues re‐
lated to ecology (e.g., habitat restoration), hydrolo‐

gy (e.g., water management), and agricultural management
practices (e.g., fertilizer and pesticide application) become
compounded when viewed within the physical, biological,
chemical,  and geological responses of the natural world. It
can be argued that achieving the goal of sustainable environ‐

mental management should involve consideration of whole‐
system effects. Unfortunately, as Ahuja et al. (2005) point
out, ecological systems typically involve highly complex
interactions of soil, plant, weather, and management compo‐
nents that are extremely difficult to quantitatively describe.
Thus, challenges in optimal resource management have
created demand for state‐of‐the‐art, integrated, flexible, and
easy‐to‐use modeling tools that are able to simulate the quan‐
titative and qualitative aspects of environmental processes
(e.g., the hydrologic cycle) with a sufficient degree of reli‐
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ability. Although a large number of environmental simula‐
tion models are available, they are typically constrained to
the specific scales and purposes they have been developed for
and therefore are more robust in some areas than others (de‐
pending on the primary goal guiding their development). Fur‐
thermore, most of the existing models are monolithic and not
modular; they are very difficult to update, extend, or connect
with other models; and they lack the flexibility to meet cur‐
rent needs for more integrated analysis of dynamic environ‐
mental issues (David et al., 2002).

All of the above reasons indicate a need for a comprehen‐
sive model development framework that can integrate exist‐
ing and future environmental models into a common,
collaborative,  interoperable, and flexible system. Such a sys‐
tem should embrace a modular design for simulation models
that reduces code complexity and supports reusability and
compatibility  of embedded science modules, ultimately re‐
sulting in more efficient collaborative (and interdisciplinary)
modeling efforts. The system should be able to integrate dif‐
ferent categories of applications potentially requiring differ‐
ent levels of scientific detail and comprehensiveness, as
driven by problem objectives, scale of application, and data
constraints. The Object Modeling System (OMS) currently
being developed by the USDA‐ARS Agricultural Systems
Research Unit and Colorado State University (Fort Collins,
Colo.) has been designed to meet the above criteria. OMS
(David et al., 2002) provides a component‐based modeling
framework that allows the implementation of single‐ or
multi‐process modules that can be developed and applied as
custom‐tailored  model configurations. It has some advan‐
tages over other existing environmental modeling frame‐
works, e.g., Open Modeling Interface (OpenMI, Gregersen et
al., 2007), Earth System Modeling Framework (ESMF, Hill
et al., 2004), and the Framework for Risk Analysis in Multi‐
media Environmental Systems (FRAMES, Castleton and
Gelston, 2003), in that it has integrated capabilities for mod‐
ule and model building, database access, model calibration,
and geospatial output visualization. Furthermore, OMS is en‐
tirely Java‐based and therefore can operate on major comput‐
ing platforms.

In addition to the growing interest in environmental mod‐
eling frameworks (Rizzoli et al., 2008), recent advances in
computing capability and geographical information systems
(GIS) have led to increasingly sophisticated watershed‐scale
models that incorporate climatic, soil, topographic, and land
use characteristics and are capable of addressing multiple is‐
sues related to water quantity and quality concerns and envi‐
ronmental assessments (Heathman et al., 2009). Notable
examples of continuous watershed simulation models in‐
clude the Soil and Water Assessment Tool (SWAT) (Arnold
et al., 1993) and the Annualized Agricultural Nonpoint‐
Source Pollution (AnnAGNPS) model (Yuan et al., 2001).
The value of these types of computer models in solving prob‐
lems related to water quantity and quality in the last decade
is reflected by directives and programs like the Conservation
Effects Assessment Project (CEAP) in the U.S. and the EU‐
Water Framework Directive (WFD) in Europe. CEAP is
comprised of two main components (Duriancik et al., 2008):
(1) a national assessment conducted by the USDA‐NRCS that
provides model estimates of conservation benefits for annual
reporting, and (2) a watershed assessment study conducted by
the USDA‐ARS aimed at quantifying the environmental
benefits from specific conservation practices at the wa‐

tershed scale (Mausbach and Dedrick, 2004). The five‐year
ARS CEAP Watershed Assessment Study (WAS) Project
Plan (USDA‐ARS, 2004) provides detailed descriptions of
research studies at 14 benchmark watersheds in the U.S.,
each of which has a particular area of special emphasis due
in part to watershed location and regional water quality is‐
sues. There are five major objectives of the WAS portion of
CEAP; the primary goal of Objective 5 is to “develop and
verify regional watershed models that quantify environmen‐
tal outcomes of conservation practices in major agricultural
regions,” with a sub‐objective to “extract relevant scientific
components from legacy software such as SWAT, An‐
nAGNPS, or other models as appropriate, and integrate them
into OMS” (USDA‐ARS, 2004). Thus, in order to satisfy the
requirements of CEAP WAS Objective 5, a new watershed
model development approach is needed that can take full ad‐
vantage of OMS modeling framework capabilities for assem‐
bling appropriate modules into a model customized to a
specific problem and scale of application for a region. In or‐
der to address the overall goal of CEAP (e.g., quantify the im‐
pacts of implementing conservation practices at field to large
watershed scales), the model should be applicable to large
watersheds or river basins of more than 500 km2 and also pro‐
vide the ability to model the hydrological cycle in a spatially
distributed and process‐oriented manner. The European
J2000 model (Krause et al., 2006) was selected to provide the
initial components for a regionalized watershed model that
satisfies the above CEAP requirements. J2000 (referred to
hereafter as J2K) is an object‐oriented, hydrological system
for fully distributed simulation of the water balance in large
watersheds and catchments. It was initially developed in the
C++ programming language, converted to Java, and has been
previously evaluated in a number of catchments in Germany
(Krause, 2002; Krause et al., 2006) and South Africa (Schef‐
fler et al., 2005). J2K was selected to provide initial regional‐
ized watershed model components because of its
object‐oriented  programming structure (essential when con‐
sidering the future goal of integrating additional science
components from SWAT, AnnAGNPS, and other models)
and because the fully distributed topological flow routing
scheme utilized by J2K is applicable at drainage areas rang‐
ing from tens to thousands km2 and much more robust than
flow routing schemes used by other watershed‐scale natural
resource models.

The specific objectives of this study were to: (1) imple‐
ment J2K hydrological modeling components under the
OMS, (2) assemble a new modular watershed‐scale model for
fully distributed transfer of water between land units and
stream channels, and (3) evaluate the accuracy and applica‐
bility of the modular watershed model for estimating stream‐
flow. The Cedar Creek watershed (CCW) in northeastern
Indiana was selected for application of the OMS‐based wa‐
tershed model. The CCW is within the larger St. Joseph River
watershed, and is the largest tributary of the St. Joseph River,
which supplies drinking water for approximately
250,000�people (SJRWI, 2004) in the city of Fort Wayne, In‐
diana. The St. Joseph River watershed (SJRW) was desig‐
nated in 2004 as one of the CEAP benchmark watersheds.
Approximately 76% of the SJRW is under extensive agricul‐
tural production. In order to achieve initial development
phase goals for the OMS‐based watershed model, it was
deemed important to initially assess model performance in
estimating streamflow only (i.e., the focus was on accurate
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representation of the hydrological system rather than on wa‐
ter quality). In addition, a decision was made to first apply the
model without formal (e.g., autocalibration) calibration
methods, thus eliminating uncertainties related to the use of
different optimized model parameter values. This research is
unique in that it represents the first attempt to develop and ap‐
ply a complex natural resource system model under the OMS.
In addition, this study represents first time that J2K hydrolog‐
ical process components have been evaluated on a watershed
in the U.S.

THE OBJECT MODELING SYSTEM (OMS)
OMS version 2.2 represents a comprehensive ARS‐led ef‐

fort in partnership with the NRCS, the U.S. Geological Sur‐
vey (USGS), and university collaborators (e.g., Colorado
State University). Modular environmental frameworks for
model development like OMS are well‐suited for compre‐
hensive projects like the CEAP WAS that require complex
simulation component technology integrated into a common,
collaborative,  and flexible system (Ascough II et al., 2005).
The basic (component‐based) concept is the representation of
all system and model components as independent entities
coupled by software interfaces (David et al., 2002). In order
to achieve maximum platform independence, OMS 2.2 was
implemented in the Java programming language and on top
of the NetBeans application platform. Extension of OMS 2.2
using new system components was facilitated through Net‐
Beans integration because of the flexible and generic design
of this platform.

The principal architecture of OMS 2.2 is presented in fig‐
ure 1. OMS 2.2 core system components include reusable
features such as simulation control across time and space,
auxiliary tools for model calibration, and control of data in‐
put/output. OMS 2.2 modeling tools, such as the Component
Builder and Model Builder, support model development

whereby multiple scientific components can be assembled
into a complex model (fig. 1). Science model components
usually implement specific approaches for representing envi‐
ronmental processes, e.g., water balance, plant growth,
chemical transport, flow routing, etc. The Component Build‐
er supports development of scientific Java components and
also allows the adaptation of legacy source code written in the
Fortran and C/C++ programming languages. The Model
Builder supports visual integration and configuration of com‐
plex models from standalone model components with an
easy‐to‐use graphical user interface that offers capabilities
for mapping component output to the input of subsequent
components. With the Model Builder, different model con‐
figurations can be stored and managed. Once a model has
been assembled and configured inside the Model Builder, it
can be easily passed to other users or executed in other com‐
puting environments. OMS 2.2 also provides various tools for
model data analysis, such as statistical evaluation and plot‐
ting/geospatial  visualization capabilities (fig. 1). Various 2‐D
plots are available that can be used to display input data and
model output responses for various simulation runs, such as
a component that allows visualization and manipulation of
spatial GIS data using NASA WorldWind geospatial technol‐
ogy. The above tools and components are fully integrated
within the OMS 2.2 framework to enable a project‐oriented
modeling process, i.e., within OMS 2.2, a modeling project
can be defined to accommodate all modeling resources such
as components, models, input parameter files, observed data
(for statistical evaluation), and simulation scenarios. The
OMS 2.2 platform is currently evolving into OMS3 (David
et al., 2010), which offers a more lightweight approach
(i.e.,�less framework‐specific code is required) for compo‐
nent and model integration. The general component code and
model structure that was used for this study still exists; how‐
ever, execution management and framework interoperability
are improved under OMS3.

Figure 1. Detailed schematic of major OMS 2.2 framework components including OMS model, system, and science module components.
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THE J2K WATERSHED MODEL
The J2K modeling system (Krause, 2002; Krause et al.,

2006) was used for the simulation of the hydrological dynam‐
ics of the Cedar Creek watershed in Indiana. J2K is a modular,
spatially distributed hydrological system that implements
hydrological processes as encapsulated process components.
J2K operates at various temporal (either hourly or daily time
steps) and spatial aggregation levels throughout the wa‐
tershed. For example, the generation of four separate runoff
components, i.e., surface runoff (RD1), interflow from the
unsaturated soil zone (RD2), interflow from the saturated
weathering layer of the underlying hydro‐geological unit
(RG1), and saturated baseflow (RG2) is simulated inside the
modeling core of J2K for each hydrologic response unit
(HRU) (fig. 2) with subsequent calculation of runoff con‐
centration processes (through a lateral routing scheme) and
flood routing in the stream channel network. An overview of
J2K functionalities for the preprocessing of input data
(e.g.,�regionalization  of climate data such as precipitation
and temperature from point sources) and a description of the
major hydrological processes simulated are given in the fol‐
lowing sections.

J2K CLIMATE DATA PREPROCESSING
Regionalization  methods are implemented for trans‐

formation of climate data collected at a point (e.g., precipita‐
tion, minimum and maximum air temperature, wind speed,
relative humidity, and solar radiation) into spatially distrib‐
uted data sets. These methods analyze the vertical (e.g., de‐
crease of temperature with increasing elevation) and
horizontal (e.g., horizontal variation of rainfall) variability of
each data set for each time step (Krause, 2002). Vertical vari‐
ability is quantified by a linear regression between station
elevation and parameter value, providing a daily gradient and
coefficient of determination (R2). If the R2 value is greater
than a user‐defined threshold, the parameter values are adapt‐
ed to the elevations of the discrete subareas by the gradient
of the regression line. Using this approach, vertical variabili‐
ty is only considered for data values showing a significant

correlation with the elevation at the specific time step. Hori‐
zontal variability is quantified by an inverse distance weight‐
ing method. The combination of the two regionalization
functions results in new climate input values for each day and
discrete HRU. The use of a more sophisticated regionaliza‐
tion method, such as the one described here, is indispensable
for macro‐scale hydrological modeling because it reproduces
the larger heterogeneity of the spatial distribution of climate
input data much better than the monthly lapse rates or
Thiessen‐polygon approaches often found in hydrological
models, which are typically only suitable for small catch‐
ments with less spatial heterogeneity of input data (Krause et
al., 2006).

The regionalized climate input data sets are then used as
J2K driving parameters, together with the physiogeographic
parameters of each HRU derived from the GIS data layers.
J2K first determines whether the precipitation is falling as
snow or rain (or a mixture of rain and snow) by a probability
function determined from the air temperature on which 50%
of the precipitation falls as rain and 50% as snow. Around this
probability distribution, a temperature interval is calculated
with an upper temperature threshold above which only rain
occurs and a lower threshold below which the entire precipi‐
tation occurs as snowfall. Between these thresholds, rain‐
snow mixtures with variable percentages for each component
are calculated. The resulting precipitation is then passed to
modules for interception, snow processes, and soil water bal‐
ance.

PLANT INTERCEPTION AND EVAPOTRANSPIRATION

The interception module (fig. 2) uses a simple storage ap‐
proach according to Dickinson (1984), which calculates a
maximum interception storage capacity based on the leaf
area index of the respective land use. As long as this maxi‐
mum capacity is not exceeded, precipitation is stored in the
actual interception storage, which is depleted by evaporation.
When the maximum storage capacity is exceeded, any sur‐
plus of rainfall is treated as throughfall and passed to the other
modules. Potential evapotranspiration (PET) is calculated 

Figure 2. Conceptual diagram of the OMS‐J2K model showing critical storages and processes.



121Vol. 55(1): 117-135

according to the Penman‐Monteith method (Monteith,
1975a, 1975b) which uses the regionalized climate data in-
formation and the parameters of the specific vegetation class
for each HRU. The implemented Penman‐Monteith
approach takes climatic constraints, (e.g., temperature, radi‐
ation, and wind speed) as well as specific parameters
(e.g.,�aerodynamic  resistance, bulk resistance, and effective
height) of different vegetation types into account. The sea‐
sonal dynamics of the vegetation parameters are derived
throughout the year by continuous functions extrapolated
from discrete values taken from various literature sources.
Actual evapotranspiration (AET) is calculated based on the
PET and the actual soil moisture using either a linear or a non‐
linear reduction function.

SNOW PROCESSES
The snow module (fig. 2) combines both empirical and

physically based routines, and simulates accumulation and
compaction of the snowpack caused by snowmelt or rain‐on‐
snow precipitation events. For this purpose, the water‐
equivalent of the dry snow (and the related density) and the
water‐equivalent of the dry snow plus the stored liquid water
and density of the whole snowpack are calculated for each
time step. This approach allows J2K to better simulate the
ability of the snowpack to store large amounts of liquid water
without necessarily producing snowmelt runoff. J2K differ‐
entiates both the snow accumulation phase and the compac‐
tion and melt phase during the lifetime of the snowpack. The
model switches between these phases depending on the air
temperature.  If the temperature is lower than the specific
temperature threshold and the entire precipitation falls as
snow, then only the accumulation phase is active. If the tem‐
perature is above the second threshold (where the entire pre‐
cipitation falls as rain), then only the settling and melt phase
is active. Both phases are active between the two phases, al‐
lowing the modeling of both snow accumulation and melt
within one time step.

SOIL WATER PROCESSES

The most complex part of J2K is the soil water balance
module, which reflects the primary role of the soil zone as a
regulation and distribution system and interacts with nearly
all other J2K process modules. A schematic of the soil water
balance module is shown in figure 2. An empirical approach
has been implemented in J2K to reproduce surface runoff
flow (RD1) resulting from snowmelt on frozen soils (or in‐
side the snowpack) and from infiltration excess during rain‐
fall with high intensity. Central to the empirical approach is
a unique storage water concept based on two different
compartments for the soil profile unsaturated zone (fig. 2).
The first storage compartment is the middle pore storage
(MPS), describing the water storage capacity of the middle‐
sized pores (diameter = 0.2 to 50 �m) in which stored water
is held against gravity and can only be drained by an active ten‐
sion. The MPS storage capacity corresponds to the usable field
capacity of the soil. The second compartment is the large pore
storage (LPS), describing the water storage capacity of the large
pores and macropores (diameter >50 �m), which are not able to
hold water against gravity and are the primary source for any
vertical and horizontal outflows. The LPS storage capacity cor‐
responds to the air capacity of the soil. The storage capacity
of the MPS and LPS compartments is determined by the de‐
scription of the soil profiles together with the effective root‐

ing depth of the land use class for each HRU.
A threshold value for the maximum infiltration capacity

can be set by the user and is weighted during the simulation
with the relative saturation of the MPS soil water storage
compartment,  resulting in an actual infiltration rate:

( ) maxact infinf ⋅−= MPS�1 (1)

where infact is the actual infiltration rate reduced according
to the relative storage content of the MPS (mm d‐1), � MPS is
the MPS soil water storage content, and infmax is a user‐
defined maximum infiltration rate (mm d‐1). Any water ex‐
ceeding the actual infiltration rate is passed to surface
depression storage from where it can either produce surface
runoff or remain available for infiltration until the next time
step (depending on the slope of the specific HRU). Rainfall
or snowmelt on impervious areas also results in surface run‐
off. J2K distinguishes land use classes of impervious areas
with a grade of sealing of 80% or greater (i.e., urban areas)
or less than 80% (i.e., agricultural/rural areas). The percent‐
age of water directly contributing to surface runoff for the
above two categories can be modified by the user.

The distribution of infiltrated water between the MPS
(MPSin, mm d‐1) and LPS (LPSin, mm d‐1) storage compart‐
ments is calculated using the relative saturation of the MPS
as an indicator (i.e., the more saturated this storage compo‐
nent is, the less water it receives, and vice versa):

)e1(MPS MPS/�−−⋅= dist
actin inf (2)

inactin inf MPSLPS −= (3)

where dist is a user‐defined calibration parameter. This ap‐
proach ensures that the LPS always receives some part of the
infiltrated water, except if the MPS is completely depleted
during the preceding time step. Using this method, vertical or
horizontal runoff can occur before field capacity is reached.
Therefore, fast runoff resulting from preferential flow paths
or macropores is often reproduced much better than by more
common methods in which runoff can only occur after FC is
saturated. The MPS is depleted by transpiration of the vegeta‐
tion cover only. The amount of water removed by the vegeta‐
tion depends on the actual evapotranspiration deficit and the
relative saturation of the MPS, whereby the maximum AET
is calculated using either a linear or a nonlinear, logistic rela‐
tionship between the above two variables.

As previously stated, the LPS storage compartment is the
source of vertical and horizontal flows occurring inside the
unsaturated soil profile. The total amount of outflow from
LPS (LPSoutflow, mm d‐1) is calculated by a nonlinear rela‐
tionship taking the relative saturation of the storage into ac‐
count:

( ) out
actoutflow

LPS
LPSLPSLPS �⋅= (4)

where LPSact is the actual LPS storage content, �LPS is the
LPS soil water storage content, and LPSout is a user‐defined
calibration parameter. The total amount of outflow is then
distributed to horizontal (interflow, RD2) and vertical (per‐
colation) components, with the contribution to each of the
components calculated by taking geomorphological
(e.g.,�slope)  as well as pedological (e.g., hydraulic conduc‐
tivities, thickness of soil horizons) parameters into account:
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latVertDistoutflow ⋅�⋅= tanLPSInterflow (5)

latVertDistoutflow ⋅�−⋅= )tan(1LPSnPercolatio (6)

where � is the HRU slope (m m‐1), and latVertDist is a user‐
defined calibration parameter. If the HRU is linked to a highly
saturated groundwater storage zone, the percolation rate is re‐
duced and the excess is passed back to the LPS. If there is still
water left in the LPS after the subtraction of the percolation and
interflow components, this amount is partly used for replenish‐
ing the MPS (depending on its actual relative saturation).

GROUNDWATER PROCESSES
The groundwater domain is conceptualized by two stor‐

ages, RG1 and RG2, for each HRU (fig. 2). RG1 represents
the water movement in the shallower withering zone of the
bedrock, and RG2 represents the water movement in the
deeper aquifer and/or in fractures and is synonymous with
baseflow. The water input (i.e., percolation) into the ground‐
water module from the LPS is distributed among the two stor‐
ages based on slope and a calibration parameter. Outflow
from the two RG storages is calculated from the actual stor‐
age content, a recession coefficient, and another calibration
parameter.

LATERAL AND STREAM CHANNEL ROUTING
After calculation of the RD1, RD2, RG1, and RG2 runoff

generation processes, runoff concentration is computed
based on topological interconnections of the single HRU
polygons, i.e., water fluxes are modeled as flow cascades
from the headwaters down to a connected stream segment.
The lateral routing can be derived very easily because the hy‐
drograph recession of the flow components during lateral
routing has already been taken into account in the soil water
and groundwater process modules. Each of the four runoff
components generated on single HRU polygons are passed to
a receiving HRU defined by its topological position (derived
by GIS analysis) or to a receiving stream reach (if the HRU
is connected to one). The flood routing inside the stream net‐

work is simulated by connecting the reach storages receiving
the water from the topologically connected HRUs by a hierar‐
chical storage cascade and calculating the flow velocity in‐
side the streambed with the Manning‐Strickler equation. For
each stream reach, the user has to define the flow length (len,
m), bed width, bed slope (so, m m‐1), and Manning's rough‐
ness (n) in the reach parameter input file. The module as‐
sumes a simple rectangular streambed shape and calculates
the actual flow velocity by an iterative approach. From the
current flow in the stream reach (qact, m3 s‐1) and the bed
width, a hydraulic radius (rh, m) is calculated. With this hy‐
draulic radius, a velocity (v, m s‐1) is determined according
to Manning‐Strickler:

32311 /
 h

/
o rs

n
v ⋅⋅= (7)

The values of rh and v are iteratively calculated until the
change in flow velocity between iterations is smaller than
0.001 m s‐1. With this flow velocity, a flood routing recession
coefficient (rk, unitless), dependent on the flow length of the
stream reach (len, m) and a user‐defined routing coefficient
(ta, h), is calculated:

3600⋅⋅= ak t
len

v
r (8)

Finally, the stream reach outflow (m3 s‐1) is calculated:

( )k/r
actout eq 1Stream −⋅= (9)

The outflow of the specific stream reach is then trans‐
ferred as inflow to the downstream reach.

JAMS‐J2K TO OMS‐J2K MIGRATION
The J2K model has previously been implemented only in

the JAMS (Jena Adaptable Modelling System) modeling
framework (Kralisch and Krause, 2006). Therefore, as shown
in figure 3, the following J2K modeling resources needed to
be transferred to the OMS framework:

Figure 3. JAMS‐J2K to OMS‐J2K migration path.
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� 40+ J2K Java scientific source components for hydro‐
logical process representation on a watershed scale, in‐
cluding climate regionalization, overland flow,
infiltration,  evapotranspiration, soil water movement,
groundwater storage, and flood routing as described in
the previous section.

� XML (Extensible Markup Language) model file de‐
scriptions for J2K component use, connectivity, and
execution order. Default values for watershed‐specific
parameters are defined here.

� ASCII data input files for hydrogeology, soils, land use,
HRU routing, and channel reach routing that are refer‐
enced from the J2K model XML file.

Although the J2K model is object‐oriented, implementa‐
tion under the OMS framework provides additional benefits
in terms of component reusability and substitutability, as well
as access to OMS auxiliary tools (e.g., output visualization).
J2K migration was facilitated by the fact that the JAMS mod‐
eling framework originated from an earlier version of the
OMS. Changes in scientific code were kept as minimal as
possible, i.e., only required changes for framework adjust‐
ments were performed. Several processing scripts were used
to semi‐automate this migration, and all J2K resources
(e.g.,�components,  model, data, etc.) were migrated from the
J2K reference base using the following steps:

1. All JAMS framework dependencies were removed,
and JAMS data types and annotations were replaced
with OMS attributes and annotations. Component in‐
terfaces and methods were transformed (all other com‐
ponent information stayed). This process was 95%
automated through the use of pattern matching scripts.

2. The JAMS J2K model XML file was duplicated using
the OMS Model Builder, i.e., attributes and spatial data
structures representing the fully distributed approach
in J2K were created using the Model Builder. Compo‐
nents were integrated as defined in the original J2K
model with respect to their execution order and attrib‐
ute connectivity. Additional descriptive information
about the components was added to the model.

3. All climate input data files were kept in their original
form and structure since all science components for
data input were also transformed from JAMS. Data out‐
put was implemented using the OMS Application Pro‐
gramming Interface (API). OMS property parameter
sets (*.csp) containing default parameter settings for
the Cedar Creek watershed were created.

In addition to the migration of J2K science components,
the XML model file, and I/O parameter files, the following
OMS‐specific resources were created to support the migra‐
tion process: (1) a simulation control file was created for the
Cedar Creek watershed to link the OMS‐J2K model to the
proper parameter file and related analysis descriptors, and
(2)�several analysis files for major state variables were
created to compare the original JAMS‐J2K output against
OMS‐J2K output based on identical input parameter settings
and climate input. The analysis files were executed during
model runtime and produced various time series plots, scatter
plots, and difference plots of JAMS‐J2K vs. OMS‐J2K output
data.

MATERIALS AND METHODS
STUDY AREA

The Cedar Creek watershed (CCW) is located within the
St. Joseph River basin in northeastern Indiana (41° 10′ 10″ to
41° 32′ 38″ N, 84° 53′ 49″ to 85° 19′ 44″ W) and covers
Noble, DeKalb, and Allen counties. The CCW drains two
11‐digit hydrologic unit code (HUC) subwatersheds, Upper
Cedar Creek (04100003080) and Lower Cedar Creek
(04100003090), covering an area of approximately 700 km2

(fig. 4). The average land surface slope of the watershed is
2.6%, and topography varies from rolling hills in Noble
county to nearly level plains in DeKalb and Allen counties,
with minimum and maximum altitudes above sea level of
232�m and 326 m, respectively. Soil types on the watershed
were formed from compacted glacial till, and the predomi‐
nant soil textures are silt loam, silty clay loam, and clay loam
(SJRWI, 2004). The annual mean precipitation in the wa‐
tershed area from 1989 to 2005 was 962 mm. The average
temperature during crop growth seasons ranges from 10°C to
23°C. The watershed is mainly used for farmland and live‐
stock production and is characterized by a high percentage of
rotationally tilled agricultural row crops (48.9%, which
mainly consist of corn, soybean, and winter wheat including
5.3% fallow), grassland (e.g., ryegrass) (27.4%), woodland
(12.4%), and pasture/CRP (Conservation Reserve Program)
(7.9%). The major land cover types are evenly distributed
throughout the watershed except the ryegrass and pasture/
CRP. The pasture/CRP concentrates mainly in the northern
and western parts, while ryegrass is concentrated in the cen‐
tral eastern part.

CCW SOIL TYPES AND LAND USE

The interaction and aggregation of soil and land use GIS
data layers in OMS‐J2K at the HRU level play an important
role in describing the hydrologic response of the system in a
realistic manner (Heathman et al., 2009). In the CCW, eight
STATSGO soil associations are represented (fig. 5a). STATS‐
GO polygon IN004 (52.9% of the watershed area) is domi‐
nated by the Crosby and Treaty soil series, Blount‐
Glynwood‐Morley; STATSGO polygon IN005 (26.7%) is 

Figure 4. Cedar Creek watershed stream network, weather stations, and
USGS gauging station for OMS‐J2K modeling.
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Table 1. STATSGO soil associations in the Cedar Creek watershed.

Soil Texture
Hydrologic
Soil Group

Area

(km2) (%)

Blount‐Glynwood‐
Morley (IN004)

Silt loam C 374.0 52.9

Blount‐Pewamo‐
Glynwood (IN005)

Silt loam C 189.0 26.7

Miami‐Wawasee‐
Crosier (IN016)

Silt loam‐
Loam

B 48.5 6.9

Houghton‐Adrian‐
Carlisle (IN019)

Silt loam B 25.2 3.6

Sebewa‐Gilford‐
Homer (IN025)

Silt loam B 56.5 7.9

Martinsville‐Whitaker‐
Rensselaer (IN028)

Loam B 14.4 2.0

Total 707.6 100.0

comprised primarily of the Crosby and Cyclone soil series,
Blount‐Pewamo‐Glynwood; STATSGO polygon IN025 (7.9%)
is dominated by Sebewa‐Gilford‐Homer; IN016 (6.9%) is
dominated by Miami‐Wawasee‐Crosier; IN019 (3.6%) is
comprised of Houghton‐Adrian‐Carlisle; and IN028 (2.0%)
is comprised of Martinsville‐Whitaker‐Rensselaer (table 1).
STATSGO polygons IN007 and IN029 comprise almost
negligible area and were not considered.

For this study, a land use map from the USDA National
Agricultural Statistics Service (NASS) was used. The NASS
land use map (USDA‐NASS, 2001) is a raster, geo‐
referenced, and categorized land use data layer produced us‐
ing satellite imagery from the Thematic Mapper (TM)
instrument on Landsat 5 and the Enhanced Thematic Mapper
(ETM+) on Landsat 7. The land use data were collected be‐
tween the dates of 29 April and 5 September 2001 with an
approximate scale of 1:100,000 and a ground resolution of
30�× 30 m. The remotely sensed land use data are used to pro‐
duce a GIS data layer that is interfaced with OMS‐J2K as
model input. The NASS 2001 land use categories were re‐
classified into eleven OMS‐J2K land use categories. As listed

Table 2. NASS 2001 land use for the Cedar Creek watershed.

Land Use

NASS 2001 Area

(km2) (%)

Agricultural row crops[a]

Corn 121.2 17.1
Soybeans 175.9 24.9
Winter wheat 4.3 0.6
Other small grains and hay 6.1 0.9
Double‐cropped winter wheat/soybeans 0.8 0.1
Popcorn 0.2 0.03
Fallow/idle cropland 37.4 5.3

Pasture/grassland/non‐agriculture 249.5 35.3
Deciduous forest 88.8 12.4
Evergreen forest ‐‐ ‐‐
Mixed forest ‐‐ ‐‐
Woods[b] ‐‐ ‐‐
Urban 16.8 2.4
Transportation/commercial ‐‐ ‐‐
High‐density residential ‐‐ ‐‐
Low‐density residential ‐‐ ‐‐
Water 5.6 0.9
Wetlands 1.0 0.1

Total 707.6 100.0
[a] Values in bold represent OMS‐J2K land use categories.
[b] OMS‐J2K considers two categories of woods.

in table 2 and shown in figure 5b, the major percentages of
land use as input into J2K are agricultural row crops (49%,
including reclassification of fallow), pasture (35%), and for‐
ests (12%). Pastureland is comprised of grassland used for
grazing and hay (27.4%) and land enrolled in conservation
programs such as the Conservation Reserve Program (CRP)
(7.9%). A small fraction of open water and urban areas make
up the remaining land use.
HRU DELINEATION AND FLOW ROUTING

For hydrological modeling of the runoff dynamics of the
Cedar Creek watershed, the watershed boundary, stream
channel network, physiographic hydrological response units
(HRUs), and topological (flow) connections between HRUs

(a)
   

(b)

Figure 5. (a) STATSGO database GIS soil map layer, and (b) NASS 2001 GIS land use map layer.
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Figure 6. Routing topology with overland flow routing vectors for the Cedar Creek watershed including an expanded view of flow routing vectors with
HRU and stream channel flow linkages.

were delineated using ArcGIS 9.2 (Environmental Systems
Research Institute, Redland, Cal.). Both standard ArcGIS
geoprocessing tools (e.g., overlay) and customized scripts for
deriving HRU flow connectivity were used. The delineation
was based on GIS layers derived from digital elevation model
(DEM) data and the STATSGO soil type and reclassified
NASS land use maps as described above; there is no limit to
the number of HRUs that can be delineated. The DEM data
used in this study were obtained from the USGS at 10 m
elevation resolution, 1/3 arc second, and a map scale of
1:24,000 quadrangle sheet. The DEM was projected to Uni‐
versal Transverse Mercator (UTM) NAD83, Zone 16 north
for the state of Indiana.

For final HRU delineation, the DEM topographical pa‐
rameters (e.g., elevation, slope, aspect) were partly reclassi‐
fied and combined (by overlay analysis in ArcGIS 9.2) with
the STATSGO soil and NASS land use GIS layers. The result‐
ing unique polygons were then aggregated (based on their at‐
tribute set and neighborhood proximity) to reduce the overall
number of spatial HRU entities. The delineation of HRUs for
the entire Cedar Creek watershed resulted in 4,174 HRU
polygons featuring areas between 0.02 to 2.5 km2. A script
for the topological routing scheme was derived in ArcGIS 9.2
for the simulation of lateral runoff generation processes,
which determines the watershed spatial connections
(e.g.,�HRU to HRU and HRU to stream reach). Figure 6
shows the stream channels and HRU polygons of the Cedar
Creek watershed, together with topological connections as
red arrows draped over the HRU polygons. From figure 6, the
dynamic spatially distributed character of the OMS‐J2K
HRU flow routing approach that separates this model from
other watershed models (e.g., SWAT) becomes apparent.

OMS‐J2K MODEL PARAMETERIZATION
The OMS‐J2K simulation period was 11 years

(1995‐2005); however, the first two years were not used for
model evaluation in order to allow model parameters to reach
equilibrium with actual physical conditions (Santhi et al.,

2001; Fontaine et al., 2002). Daily precipitation and maxi‐
mum/minimum air temperatures were obtained from the Na‐
tional Oceanic and Atmospheric Administration National
Climate Data Center (NOAA‐NCDC, 2004) for the Garret
and Waterloo weather stations for the years 1995‐2005
(see�fig. 4 for CCW station locations). Data for solar radi‐
ation, wind speed, and relative humidity were generated us‐
ing the WGEN (Richardson and Wright, 1984) stochastic
weather generator. As described previously, the regionaliza‐
tion preprocessors in OMS‐J2K automatically distributed the
climate data from the two gauges over the watershed. Histori‐
cal measured data for Cedar Creek streamflow gauge
04180000 (41° 13′ 8″ N, 85° 4′ 35″ W) (fig. 4) were supplied
by the USGS for the nine‐year evaluation period from Janu‐
ary 1997 to December 2005.

The OMS‐J2K parameters describing a watershed and its hy‐
drological response can be considered as spatially distributed
but temporally static descriptors (or spatial attributes) that de‐
scribe spatial heterogeneity and variability in the watershed.
The spatial attributes of the CCW (e.g., elevation, slope, aspect,
soil type ID, land use type ID) for each HRU polygon were de‐
rived as previously discussed and stored along with the flow
routing information in an HRU topology parameter file. In a
second parameter file, physical soil parameters (e.g., air capac‐
ity, field capacity) are defined according to the horizon descrip‐
tion of the STATSGO soil map for each soil type. In a third
parameter file, physical vegetation parameters (e.g., LAI, albe‐
do, stomatal resistance, effective height, and effective rooting
depth) are stored for each land use class. Effective parameters
describing the groundwater domain (storage capacity and re‐
cession coefficients for the aquifer system) are contained in
a fourth parameter file. The interaction between the parame‐
ter files is described by the spatial relationship between the
soil and land use IDs in the HRU topology parameter file and
the respective (i.e.,�matching) IDs in the other parameter
files. During the model initialization sequence, this informa‐
tion is read from the files and transferred as spatial attributes
to the HRU and stream reach objects of the model.
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Table 3. OMS‐J2K input parameters used for base parameter set simulations.

Parameter Description
Recommended

Range
Parameter

Value

General initialization FCAdaptation Multiplier for field capacity 0.0 to 5.0 1.0
ACAdaptation Multiplier for air capacity 0.0 to 5.0 1.0

initRG1 Initial storage of RG1 relative to maximum storage 0.0 to 1.0 0.50
initRG2 Initial storage of RG2 relative to maximum storage 0.0 to 1.0 0.50

Interception a_rain Maximum storage capacity per LAI for rain (mm) 0.0 to 10.0 2.5
a_snow Maximum storage capacity per LAI for snow (mm) 0.0 to 10.0 3.0

Snow snow_trs Upper temperature threshold above which only rain occurs ( C) 0.0 to 0.5 0.0
snow_trans Lower temperature threshold below which only snow occurs ( C) ‐2.0 to 2.0 1.0
baseTemp Melting temperature of snow ( C) ‐1.0 to 1.0 0.3
t_factor Temperature factor for snowmelt calculation 0.0 to 5.0 0.85
r_factor Rain factor for snowmelt calculation 0.0 to 5.0 0.25
g_factor Soil heat factor for snowmelt calculation 0.0 to 10.0 2.0

snowCritDens Snowpack density beyond free water is released (g cm‐1) 0.1 to 1.0 0.40
ccf_factor Cold content factor 0.0 to 1.0 0.10

Soil water soilMaxDPS Maximum depression storage capacity (mm) 0.0 to 10.0 2.0
soilPolRed Potential reduction coefficient for AET computation 0.0 to 10.0 5.0
soilLinRed Linear reduction coefficient for AET computation 0.0 to 10.0 0.0

soilMaxInfSummer Maximum infiltration rate in summer (mm d‐1) 0.0 to 200.0 100.0
soilMaxInfWinter Maximum infiltration rate in winter (mm d‐1) 0.0 to 200.0 75.0
soilMaxInfSnow Maximum infiltration rate for snow covered areas (mm d‐1) 0.0 to 200.0 40.0

soilImpGT80 Relative infiltration for impervious areas greater 80% sealing 0.0 to 1.0 0.25
soilImpLT80 Relative infiltration for impervious areas less 80% sealing 0.0 to 1.0 0.60

soilDistMPSLPS MPS/LPS distribution coefficient 0.0 to 10.0 1.5
soilDiffMPSLPS MPS/LPS diffusion coefficient 0.0 to 10.0 2.0

soilOutLPS Outflow coefficient for LPS 0.0 to 10.0 3.0
soilLatVertLPS Lateral/vertical distribution coefficient for LPS 0.0 to 10.0 1.0
soilMaxPerc Maximum percolation rate (mm d‐1) 0.0 to 20.0 5.0
soilConcRD1 Recession coefficient for overland flow 0.0 to 10.0 1.7
soilConcRD2 Recession coefficient for interflow 0.0 to 10.0 2.0

Groundwater gwRG1RG2dist RG1/RG2 distribution coefficient 0.0 to 1.0 0.80
gwRG1Fact Adaptation of RG1 outflow 0.0 to 10.0 1.0
gwRG2Fact Adaptation of RG2 outflow 0.0 to 10.0 1.0
gwCapRise Capillary rise coefficient 0.0 to 1.0 0.0

Flood routing flowRouteTA Flood routing coefficient controlling flood wave velocity 0.0 to 100.0 1.0

In addition to the files containing spatial attributes as de‐
scribed above, the *.csp file (as described in the JAMS‐J2K
to OMS‐J2K Migration section and shown in fig. 3) contains
non‐spatial parameters describing coefficients used in OMS‐
J2K initialization, interception, snow processes, soil water,
groundwater, and flood routing science module components.
Initial OMS‐J2K parameter values and recommended ranges
are listed in table 3 and were taken from simulation studies
successfully applying JAMS‐J2K to watersheds in Germany
and elsewhere exhibiting physical characteristics (e.g., to‐
pography, size, and agricultural land use) very similar to the
CCW. The “base parameter set” presented in table 3 repre‐
sents an initial attempt to establish realistic input parameter
values without resorting to a detailed calibration procedure.
In addition to the base parameter set, an “adjusted parameter
set” was also developed to better account for evapotranspira‐
tion dynamics and tile drainage areas in the CCW. This was
accomplished by adjusting three OMS‐J2K input parameters
controlling the amount of PET partitioned to AET, the
amount of water available in the LPS soil water storage
compartment,  and the rate of outflow from the LPS soil water
storage compartment. All OMS‐J2K CCW simulations were
run using both the base and adjusted parameter sets.

OMS‐J2K MODEL STATISTICAL EVALUATION
Four evaluation criteria were used to assess daily, month‐

ly, and average annual streamflow simulated by OMS‐J2K.
The criteria are quantitative statistics that evaluate the over‐
all correspondence of simulated output to observed values
and include the Nash‐Sutcliffe efficiency coefficient (ENS),
coefficient of determination (R2), root mean square deviation
(RMSD), relative absolute error (RAE), and percent bias
(PBIAS). The ENS, RMSD, RAE, and PBIAS statistics are
defined as:
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where Pi is the ith value of streamflow (m3 s‐1) predicted by the
OMS‐J2K model, Oi is the ith observed value of streamflow (m3

s‐1), O is the average observed streamflow during the simula‐
tion period (m3 s‐1), and n is the number of observations. ENS
indicates how well the plot of observed versus simulated values
fits a 1:1 line. The value of ENS in equation 9 may range from
�� to 1.0, with 1.0 representing a perfect fit of the data. ENS
values were computed for both monthly and daily streamflow.
The coefficient of determination (R2) represents a measure of
the strength of the linear relationship between predicted stream‐
flow and observed measurements, whereas the RMSD is indica‐
tive of the error associated with estimated streamflow. RAE is
the total absolute error relative to what the total absolute error
would have been if the prediction had been the mean of the ob‐
served values. PBIAS is a measure of the average tendency of
simulated streamflows to be larger or smaller than correspond‐
ing observed values. The optimal PBIAS value is 0.0; a positive
value indicates a bias toward overestimation, whereas a nega‐
tive value indicates a model bias toward underestimation. The
PBIAS evaluation statistic has been presented by Gupta et al.
(1999) and others in the literature with a positive value indicat‐
ing model bias towards underestimation and a negative value in‐
dicating bias towards overestimation. However, we find this to
be counterintuitive, which explains the slightly different form of
equation 13 presented herein. Donigan et al. (1984) considered
the Hydrological Simulation Program ‐ Fortran (HSPF) model
performance for a monthly time step very good if the absolute
percent error is less than 10%, good if the error is between 10%
and <15%, and fair if the error is between 15% and <25% for
calibration and validation. In a review of model evaluation cri‐
teria by Moriasi et al. (2007), model performance for a monthly
time step was judged to be satisfactory if PBIAS is less than
±25% and ENS is greater than 0.50. Van Liew et al. (2005) sug‐
gest that for both daily and monthly time steps, PBIAS values
less than ±20% are considered good, values between ±20%
and ±40% are considered satisfactory, and values greater than
±40% are considered unsatisfactory. In addition, Van Liew et
al. (2005) consider ENS values greater than 0.75 good, values
between 0.75 and 0.36 satisfactory (Motovilov et al., 1999), and
values less than 0.36 unsatisfactory. Given the fact that formal
calibration techniques were not used, the Van Liew et al. (2005)
standard, which is somewhat more relaxed than the Moriasi et
al. (2007) standard, was adopted for the ENS and PBIAS evalua‐
tion criteria used in this study. In addition to assessing model
performance based on the criteria mentioned above, Tukey's
least significant difference (LSD) statistical test was also used
at the � = 0.05 level to analyze statistical differences between
observed and simulated average streamflow values.

RESULTS
Historical measured data for Cedar Creek streamflow from

the USGS for a nine‐year period (January 1997 to December
2005) at gauge 04180000 (41° 13′ 8″ N, 85° 4′ 35″ W) near Ce‐
darville, Indiana, were compared with daily, monthly, and
annual OMS‐J2K noncalibrated streamflow. The streamflow
data obtained from the USGS are composed of baseflow and
surface runoff; therefore, no baseflow filter program was ap‐
plied to the OMS‐J2K streamflow predictions.

BASE PARAMETER SET SIMULATIONS

Although the OMS‐J2K model was run uncalibrated using
the base parameter set, modeled water balance predictions
for the simulation period (e.g., evapotranspiration, surface
runoff) were compared with historical averages that are rep‐
resentative of hydrologic conditions on the watershed. The
Indiana Department of Natural Resources (IDNR, 1980,
1987) reported that the long‐term average annual net supply
to surface water in the northeastern part of the state is
305�mm, distributed as 213 to 229 mm in diffused surface wa‐
ter and 76 to 91 mm in recharge to groundwater. The average
annual precipitation in this part of Indiana is approximately
965 mm, with ET accounting for approximately 660 mm
(IDNR, 1980, 1987). For the base parameter set, average
annual measured precipitation on the CCW was 922 mm,
OMS‐J2K average annual simulated ET was 688 mm, and
OMS‐J2K average annual simulated surface runoff was
201�mm.

Daily observed and OMS‐J2K simulated streamflow from
January 1997 to December 1997 and from January 2000 to
December 2000 are presented in figures 7 and 8, respectively.
These graphs serve as one‐year subsets of the results from the
nine‐year simulation period and represent the highest (1997)
and lowest (2000) annual average streamflow years for the
CCW during the simulation period. For uncalibrated condi‐
tions, overall model performance on a daily time step was
quite variable (unsatisfactory to good based on the evaluation
statistics in table 4); however, the trend in streamflow ap‐
peared to be captured correctly. There were significant and
frequent underestimations (and some overestimations) by the
OMS‐J2K model on some days compared to the measured
data, which may be due in part to having rainfall input data
for only two weather stations in the CCW. Heathman et al.
(2009) reported that daily rainfall records for the Garret and
Waterloo weather stations show many periods of time when
significant rainfall events were recorded (with a subsequent
response or spike in simulated streamflow data using the
SWAT model), yet little or no response was observed in the
USGS discharge data at the watershed outlet. They hypothe‐
sized that these were extremely localized rainfall events that
did not significantly contribute to the total measured wa‐
tershed streamflow.

As with the Heathman et al. (2009) study, the OMS‐J2K
modeled distribution of rainfall over the entire watershed
area was based on input data from the Garret and Waterloo
weather stations. In general, the OMS‐J2K model underesti‐
mated streamflow on a daily time step, as shown in the 1:1
scatter plot in figure 9, where all data points are included for
the nine‐year simulation period. The negative value for
PBIAS (‐18.43%) indicates that the model underestimated
streamflow, and the ENS (0.34) and R2 (0.48) values are con-
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Figure 7. Daily Cedar Creek watershed streamflow for observed and OMS‐J2K base parameter set simulated values (January 1997 to December 1997).

Figure 8. Daily Cedar Creek watershed streamflow for observed and OMS‐J2K base parameter set simulated values (January 2000 to December 2000).

Table 4. Statistical evaluation for OMS‐J2K simulated daily, average monthly, and average
annual Cedar Creek watershed streamflow (January 1997 to December 2005).[a]

Statistical
Evaluation
Coefficient

Base Parameter Set Adjusted Parameter Set

Daily
Streamflow

Average Monthly
Streamflow

Average Annual
Streamflow

Daily
Streamflow

Average Monthly
Streamflow

Average Annual
Streamflow

ENS 0.34 0.48 0.44 0.44 0.59 0.52
R2 0.48 0.69 0.82 0.54 0.77 0.87

RMSD 8.79 4.10 1.50 7.73 3.21 0.87
RAE 0.64 0.54 1.38 0.60 0.43 0.75

PBIAS ‐18.43 ‐8.59
[a] ENS = Nash‐Sutcliffe efficiency, R2 = coefficient of determination, RMSD = root mean square deviation (m3 s‐1), 

RAE = relative absolute error, and PBIAS = bias or relative error (%).

sidered unsatisfactory according to Van Liew et al. (2005), al‐
though the PBIAS value is good since it is less than ±20%.
The RMSD and RAE values for daily streamflow were
8.79�m3 s‐1 and 0.64, respectively. The results of Tukey's
LSD test (� = 0.05) for the difference between observed and
simulated streamflow are given in table 5. The base
parameter set results for the 1997 and 2000 daily streamflow

analysis show that simulated daily streamflow for these two
years are significantly different from the observed daily
streamflow.

Average monthly observed and J2K simulated streamflow
from January 1997 to December 2005 are presented in fig‐
ure�10. This figure shows that the trend in simulated average
monthly streamflow followed the observed values much 
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Figure 9. Daily Cedar Creek watershed streamflow 1:1 plot of OMS‐J2K
base parameter set simulated values versus observed (January 1997 to
December 2005).

Table 5. Tukey's LSD analysis for observed and OMS‐J2K
simulated daily (1997 and 2000) and average annual

Cedar Creek watershed streamflow.[a]

Daily
Streamflow

(1997)
(m3 s‐1)

Daily
Streamflow

(2000)
(m3 s‐1)

Average
Streamflow
(all years)
(m3 s‐1)

Observed 9.42 a 5.55 a 7.70 a

OMS‐J2K
(base parameter set)

7.83 b 4.48 b 6.28 b

OMS‐J2K
(adjusted parameter set)

9.09 a 5.14 a 7.04 b

[a] Average values followed by the same letter are not significantly
different using Tukey's LSD test with α = 0.05.

more closely than the simulated daily streamflow results.
Furthermore, it is easy to discern that the simulated average
monthly streamflow in figure 10 was significantly underesti‐
mated for most of the nine‐year simulation period. This sig‐
nificant underestimation trend is also readily apparent in the
monthly 1:1 streamflow scatter plot shown in figure 11. The
statistical results for average monthly streamflow in table 4
show that ENS improved to 0.48, the RMSD (4.10 m3 s‐1) was

Figure 11. Monthly Cedar Creek watershed streamflow 1:1 plot of OMS‐
J2K base parameter set simulated values versus observed (January 1997
to December 2005).

less than half of the daily streamflow, and the RAE decreased
to 0.54. The PBIAS value for average monthly streamflow is
not shown as it is essentially the same as for daily streamflow.
Similar to the results for daily streamflow, the average
monthly streamflow results in table 5 for Tukey's test (� =
0.05) also indicate a significant difference between the ob‐
served and OMS‐J2K simulated streamflow values.

The data for average annual observed and simulated
streamflow are shown in figure 12 for the nine‐year simula‐
tion period; the simulated data clearly indicate the strong
OMS‐J2K underprediction for all years. OMS‐J2K model
performance based on the statistical analysis in table 4 indi‐
cates that streamflow simulation results at the annual output
time scale were generally better than simulation results for
the daily and monthly output time scales, with the exception
of ENS, which decreased to 0.44. The results for Tukey's LSD
test (� = 0.05) in table 5 again show that the simulated annual
average streamflow values were significantly different from
the observed annual average values. As expected, the RMSD
continued to decrease with increasing time scale, i.e., aver‐
age annual streamflow RMSD (1.50 m3 s‐1) was again less
than half of the average monthly streamflow RMSD. It
should be noted that on a year‐by‐year basis, the data in figure

Figure 10. Monthly Cedar Creek watershed streamflow for observed and OMS‐J2K base parameter set simulated values (January 1997 to December
2005).
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Figure 12. Annual average Cedar Creek watershed streamflow for observed and OMS‐J2K base parameter set simulated values (January 1997 to
December 2005).

12 indicate that simulated average annual streamflow was
underestimated somewhat randomly across the simulation
period and was generally unaffected by the magnitude of ob‐
served streamflow. However, closer inspection of the data
shows that the three years with the lowest observed
streamflows (2000, 2002, and 2005; average streamflow of
6.4 m3s‐1) were underestimated to a lesser degree by OMS‐
J2K (‐17.2% average underestimation) than the three years
with the highest observed streamflows (1997, 2001, and
2003; average streamflow of 9.2 m3 s‐1), with the observed
streamflow underestimated by an average of ‐21.4% (data not
shown).

Finally, figure 13 shows ENS, R2, and RAE values com‐
puted from the simulated (using the base parameter set) and

observed monthly streamflows for individual years (fig. 13a)
and cumulatively at a one‐year increment (fig. 13b) for the
entire 1997‐2005 simulation period. With the exception of
2000 (the year with the lowest observed streamflow), the ENS
and R2 evaluation statistics are fairly consistent across the
simulation period (fig. 13a). Interestingly, the RAE evalua‐
tion statistic is much higher than the ENS and R2 evaluation
statistics, predominantly for the years with the lowest ob‐
served (e.g., 2000 and 2005) and highest observed (e.g., 1997
and 2001) streamflows (fig. 13a). For the cumulative ENS,
R2, and RAE evaluation statistics (fig. 13b), large fluctua‐
tions occur during the first five years of the simulation period
(1997‐2001) and stabilize for the remaining four years
(2002‐2005).

(a)

(b)

Figure 13. Comparative evaluation statistics for J2K‐OMS base parameter set simulated values and observed monthly flows for the Cedar Creek wa‐
tershed (January 1997 to December 2005): (a) individual years, and (b) cumulative years.
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ADJUSTED PARAMETER SET SIMULATIONS
The simulation results presented for the base parameter

potentially indicate overprediction of ET on the watershed in
addition to a systematic underprediction of streamflow
across all time scales. Table 1 shows that land use on the wa‐
tershed is quite diverse; furthermore, the simplistic represen‐
tation of evapotranspiration dynamics in OMS‐J2K may not
adequately capture complex soil water and plant interactions
occurring in the watershed. Therefore, the soilLinRed coeffi‐
cient in table 3 was increased from 5.0 to 8.0. This coefficient
controls the partitioning of PET to AET, i.e., increasing soil‐
LinRed decreases the amount of PET partitioned to AET. In
addition, an attempt was made to account for areas of tile
drainage on the Cedar Creek watershed. A logical way to rep‐
resent the effects of tile drainage in OMS‐J2K was to increase
both the amount of water available in the LPS and the rate of
outflow from LPS. Therefore, the soilDistMPSLPS and soi‐
lOutLPS coefficients (table 3) were decreased from 1.5 to
0.50 and from 3.0 to 1.0, respectively. Decreasing soil‐
DistMPSLPS increases the amount of infiltrated water avail‐
able for LPS; decreasing soilOutLPS increases the outflow
rate from LPS. These adjustments approximate the more rap‐
id removal of water from tile drains than what would normal‐
ly be expected with the absence of tile drainage. All
OMS‐J2K CCW simulations were re‐run using the new “ad‐
justed parameter set” with the modified values for soil‐
LinRed, soilDistMPSLPS, and soilOutLPS. This is similar to
the procedure employed by Bosch et al. (2004), who applied
the SWAT model from 1997‐2002 to a Little River, Georgia,
sub‐watershed and compared scenarios for default parameter
conditions and modified initial conditions. The adjusted pa‐
rameter set simulation results are presented in tables 4 and 5
and figures 14 and 15.

Table 4 shows that all statistical evaluation coefficients for
daily streamflow improved substantially for the adjusted pa‐
rameter set compared to the base parameter set. In particular,
the ENS coefficient increased from 0.34 to 0.44, and PBIAS
decreased from ‐18.43% to ‐8.59%. The OMS‐J2K model
still underestimated streamflow on a daily time step (as
shown in the 1:1 plots in fig. 14); however, the improvement
in scatter around the 1:1 line compared to the base parameter

Figure 14. Daily Cedar Creek watershed streamflow 1:1 plot of OMS‐J2K
adjusted parameter set simulated values versus observed (January 1997
to December 2005).

set simulation results in figure 9 is noticeable. Furthermore,
the adjusted parameter set results in table 5 for Tukey's LSD
test (� = 0.05) show that simulated daily streamflow for 1997
and 2000 was not significantly different from observed daily
streamflow. Table 4 also shows that all statistical evaluation
coefficients for average monthly and average annual stream‐
flow improved for the adjusted parameter set as compared to
the base parameter set. Average monthly and average annual
improvements were of similar magnitude as the improve‐
ments in daily streamflow. However, the adjusted parameter
set results in table 5 for Tukey's LSD test (� = 0.05) show that
simulated streamflow averaged for all years was significantly
different from average observed annual streamflow. Average
monthly observed and J2K simulated streamflow from Janu‐
ary 1997 to December 2005 for the adjusted parameter set are
shown in figure 15. This figure shows that the trend in simu‐
lated average monthly streamflow for the adjusted parameter
set followed the observed values much more closely (both in
trend and in better estimation of peak streamflow events)
than the simulated monthly streamflow results for the base
parameter set shown in figure 10.

Figure 15. Monthly Cedar Creek watershed streamflow 1:1 plot of OMS‐J2K adjusted parameter set simulated values versus observed (January 1997
to December 2005).
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DISCUSSION
The range of relative error (e.g., PBIAS) and ENS values

for uncalibrated or manually adjusted daily streamflow pre‐
dictions in this study (for both parameter sets) are similar to
others reported in the literature for various watershed models.
There is a considerable collection of literature that demon‐
strates the use of the SWAT model in effectively modeling
streamflow (e.g., Van Liew and Garbrecht 2003; Di Luzio et
al., 2005; White and Chaubey 2005; Larose et al., 2007). The
statistical analysis results reported in this study for uncali‐
brated daily (PBIAS = ‐18.43% and ‐8.59%, ENS = 0.34 and
0.44, and RAE = 0.64 and 0.60 for the base and adjusted pa‐
rameter sets, respectively), monthly (ENS = 0.48 and 0.59;
RAE = 0.54 and 0.43), and annual (ENS = 0.44 and 0.52;
RAE�= 1.38 and 0.75) streamflow predictions fall within the
range of those found throughout the literature. For SWAT dai‐
ly streamflow predictions, Van Liew and Garbrecht (2003)
reported uncalibrated ENS values as low as ‐7.05 that were
improved with calibration to values as high as 0.60 for three
subwatersheds in the Little Washita River, Oklahoma, wa‐
tershed. For a small watershed in Kentucky, Spruill et al.
(2000) found that differences between observed and cali‐
brated daily SWAT streamflow rates ranged between ±25%
over a two‐year period and that the size of the drainage area
influenced SWAT discharge prediction accuracy. A five‐year
study by Wang and Melesse (2006) showed that for the Elm
River watershed in North Dakota, calibrated daily SWAT
streamflow predictions ranged from 5% overprediction to
35% underprediction compared to the observed data. For
SWAT monthly streamflow predictions, Tolson and Shoe‐
maker (2007) reported ENS values ranging from 0.43 to 0.86
for different gauge stations in the Cannonsville Reservoir in
upstate New York. Van Liew and Garbrecht (2003) reported
uncalibrated SWAT ENS values as low as ‐4.49 for stream‐
flow that were improved with calibration to values as high as
0.75 for the Little Washita River, Oklahoma, subwatersheds.
Bosch et al. (2004) applied the SWAT model to a Little River,
Georgia, subwatershed using different input scenarios (low
vs. high spatial resolution data and default initial parameters
vs. parameters modified for existing groundwater condi‐
tions) and obtained ENS values ranging from 0.55 to 0.80 for
monthly total flow volumes. Manguerra and Engel (1998)
used a non‐rigorously calibrated SWAT on a 113.4 km2 tile‐
drained Indiana watershed and obtained an ENS of 0.48 and
an R2 of 0.82 for monthly streamflow from 1991 to 1995.
Without available information to account for the tile drainage
effects, they adjusted the curve number and return flow pa‐
rameters to offset the impacts of subsurface drainage on the
rainfall‐runoff response. Parajuli et al. (2009) reported SWAT
monthly ENS values for streamflow in a south‐central Kansas
watershed of 0.56 for calibration and 0.48 for validation. For
average annual streamflow, Van Liew and Garbrecht (2003)
stated that the SWAT model underestimated streamflow by
18.4% (almost identical to this study) using default values for
model parameters affecting streamflow prediction, and on a
year‐by‐year basis SWAT underestimated one year by as
much as 98.4% while overestimating another year by
156.9%. Larose et al. (2007) and Heathman et al. (2009) both
used the SWAT model to estimate daily, average monthly, and
average annual streamflow for the Cedar Creek watershed.
Larose et al. (2007) reported ENS coefficients for monthly
and daily streamflow calibration and validation ranging from

0.51 to 0.66, respectively. Heathman et al. (2009) reported
best model performance values of ENS = 0.58, R2 = 0.66, and
PBIAS = 21.93% for uncalibrated monthly streamflow pre‐
dictions. OMS‐J2K evaluation statistics for streamflow also
fall in the same range as those produced using the An‐
nAGNPS model. Sarangi et al. (2007) used AnnAGNPS to
predict runoff and sediment losses from forested and agricul‐
tural watersheds on the island of St. Lucia in the Caribbean.
Based on calibration and validation of the model for different
rainfall events, Sarangi et al. (2007) reported errors of 7% to
36% for annual streamflow prediction from the agricultural
watershed, which are higher than the OMS‐J2K noncali‐
brated streamflow PBIAS value in this study (‐18.4%). In a
two‐year study on a small watershed in southern Ontario, Das
et al. (2006) reported that AnnAGNPS underestimated mean
annual runoff by approximately 55% for noncalibrated con‐
ditions, which is again considerably higher than the range of
underprediction obtained with OMS‐J2K in this study.

Even with streamflow prediction improvements using the
adjusted parameter set, OMS‐J2K still consistently underes‐
timated streamflow. Because the model time step is daily, it
is difficult to accurately capture sub‐daily (i.e., individual
storms) and even daily results because of potential time shifts
in the precipitation and flow data. The addition of a more
physically based infiltration component, such as the Green‐
Ampt infiltration model (Green and Ampt, 1911) used by
SWAT and other agroecosystem models, might help in this re‐
gard. Streamflow was evaluated on an average monthly and
average annual basis (in addition to a daily basis) to better
evaluate trends in model output or error; however, OMS‐J2K
underestimated streamflow at all time scales. Additional pos‐
sible explanations for the underprediction may be attributed
to using default values for the recession coefficient parame‐
ters that govern simulated flow through the shallow and deep
groundwater storage (RG1 and RG2). Other studies
(e.g.,�Krause,  2002) have shown the J2K model to be particu‐
larly sensitive to the recession coefficients (used for final cal‐
culation of RG1 and RG2). The CCW streamflow data were
simulated without the inclusion of the tile drainage system.
Therefore, adjustments to the soilDistMPSLPS and soi‐
lOutLPS coefficients were meant to approximate the effect of
tile drainage, i.e., the adjustments approximate the more rap‐
id removal of water from tile drains than what would normal‐
ly be expected with the absence of tile drainage.
Unquestionably, the presence of tile drains significantly im‐
pacts the water yield and streamflow in the CCW and addi‐
tion of a tile drainage component to OMS‐J2K should
increase streamflow prediction accuracy. Finally, potholes,
reservoirs, ponds, and impoundment structures are not cur‐
rently simulated by OMS‐J2K. Some of these structures, par‐
ticularly ponds and impoundments, are present on the CCW
and most likely affect the overall runoff concentration dy‐
namics on the watershed.

The availability of accurate climate data also plays an im‐
portant role in model performance and accuracy. The effects
of spatial and temporal variability in rainfall on model output
uncertainty has been previously documented (Haan, 1989;
Chaubey et al., 1999), and spatial variability of precipitation
data represents one of the major limitations in large‐scale
hydrologic modeling (Arnold et al., 1998). Hoblit et al.
(1999) presented National Weather Service guidelines that
recommend seven point‐based climate stations to simulate a
1,200 km2 basin (i.e., one station for every 171 km2). The
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HRUs in OMS‐J2K accessed data from only two weather sta‐
tions in the CCW (fig. 5), one of which (the Waterloo weather
station) was on the northernmost boundary of the watershed.
As a result, it is possible that the distribution of rainfall over
the entire watershed may be inaccurately represented, i.e., an
important limitation of the modeling exercise was the spatial
resolution of the climate data (which would thus impact
streamflow estimation). The streamflow simulation results
for OMS‐J2K almost certainly would improve if additional
stream gauge and weather data (e.g., NEXRAD data) were
available.

A large number of studies investigating SWAT model per‐
formance for average monthly streamflow have noted that
the model tended to underestimate flows during the winter
and spring wet months and overestimate flows during the
summer and fall dry months (e.g., Feyereisen et al., 2007;
Van Liew et al., 2007). Arnold et al. (2000) discussed the oc‐
currence of a seasonal trend (underestimation in spring, over‐
estimation in fall) in SWAT runoff prediction, which they
attributed to snowmelt simulation, seasonal variation in ET,
and soil moisture variations. As previously discussed, in this
study OMS‐J2K underestimated the three years with lowest
observed streamflows (2000, 2002, and 2005) by an average
of 17.2% and underestimated the three years with highest ob‐
served streamflows (1997, 2001, and 2003) by an average of
21.4%. Underprediction of streamflow (especially during the
spring to summer months, fig. 11) is probably due to an over‐
estimation of ET. The Penman‐Monteith equation, which is
used in OMS‐J2K to estimate ET, requires significant data,
including, but not limited to, solar radiation, wind speed, soil
characteristics,  and canopy cover characteristics. Because
only precipitation and temperature were available as histori‐
cal input data, the other meteorological data needed for this
calculation were obtained by using the WGEN weather gen‐
erator. Considerable uncertainty exists in weather genera‐
tion, and this uncertainly is propagated in the final ET values
determined by OMS‐J2K. Furthermore, a lack of available
measured ET data for the study period makes it difficult to
validate simulated ET results. Under‐ or overestimations of
ET could thereby affect the overall water balance, particular‐
ly during the summer months when ET demand is higher
(Heathman et al., 2009).

In summary, we chose to evaluate uncalibrated stream‐
flow results considering that OMS‐J2K was developed for
applications on ungauged watersheds. Tolson and Shoemak‐
er (2007) and Heathman et al. (2009) both caution the poten‐
tial for formal model calibration to introduce a level of bias
that could ultimately mask or eliminate the impact of the sim‐
ulated runoff generation processes on the simulated stream‐
flow results. In particular, Tolson and Shoemaker (2007) state
“The calibration step ... will often be able to mask or elimi‐
nate some of the prediction inaccuracies due to incorrect or
inaccurate model inputs such as slope and soil inputs.” Fur‐
thermore, Heathman et al. (2009) point out that “based on
previous watershed modeling studies using the SWAT model,
it is very likely that nearly all of the simulation years could
be calibrated to within satisfactory levels of performance.” A
shuffled complex evolution (SCE) calibration component
(Duan et al., 1992, 1993) has been integrated within OMS‐
J2K, and future modeling efforts will investigate model pre‐
dictive performance for streamflow using parameters
derived through autocalibration.

SUMMARY AND CONCLUSIONS
The long‐term continuous hydrologic simulations of

OMS‐J2K performed reasonably well in predicting daily,
monthly, and annual average flows on the Cedar Creek
(gauge 04180000) near Cedarville, Indiana. Comparisons of
daily, monthly, and annual average simulated and observed
flows for the 1997‐2005 simulation period using a default
base parameter set resulted in a relative error of ‐18.43% for
PBIAS and statistical evaluation coefficients ranging from
(worst to best) 0.34 to 0.48 for Nash‐Sutcliffe efficiency
(ENS), 0.48 to 0.82 for coefficient of determination (R2), and
0.64 to 1.38 for relative absolute error (RAE). Base parame‐
ter set values related to PET partitioning, MPS/LPS partition‐
ing, and LPS outflow were subsequently modified to form an
adjusted parameter set. All statistical evaluation coefficients
for daily, average monthly, and average annual streamflow
improved substantially for the adjusted parameter set
(e.g.,�relative  error of ‐8.59% for PBIAS and statistical eval‐
uation coefficients ranging from (worst to best) 0.44 to 0.59
for ENS, 0.54 to 0.87 for R2, and 0.60 to 0.75 for relative abso‐
lute RAE. For both parameter sets, OMS‐J2K underpredicted
the majority of the peak flows during the nine‐year simula‐
tion of the Cedar Creek watershed, with some individual
storm events underpredicted by many orders of magnitude.
Despite the underprediction, all of the evaluation statistics
for ENS and PBIAS for both parameter sets were within the
good to satisfactory ranges as suggested by Van Liew et al.
(2005), with the exception of the daily streamflow ENS value.
Furthermore, the range of ENS and PBIAS values for stream‐
flow predictions in this study using both parameter sets were
similar to other uncalibrated or manually adjusted stream‐
flow evaluation results reported in the literature for different
watershed models. It was unclear whether OMS‐J2K needs
enhancements in storm event simulations for improving high
and peak flow predictions (e.g., addition of a tile drainage
component or improved ET component) or whether the dis‐
tribution of rainfall over the entire watershed was inaccurate‐
ly represented due to the use of only two climate stations.

The results indicate that the OMS‐J2K watershed model
was able to reproduce the hydrological dynamics of the Cedar
Creek watershed and should serve as a foundation on which
to build a regionalized model that is able to quantify the im‐
pact of conservation practice implementation on water quan‐
tity and quality at the watershed scale. In particular, the
topological routing scheme employed by OMS‐J2K (thus al‐
lowing the simulation of lateral processes important for the
modeling of runoff concentration dynamics) is much more
robust than the quasi‐distributed routing schemes used by
other watershed‐scale natural resource models (e.g., SWAT).
The largest advantage of the OMS‐J2K routing approach is
a process‐oriented view of spatial watershed characteristics
that drive hydrological behavior. With a fully distributed
routing concept, higher spatial resolution in combination
with the lateral transfer of water between HRUs and stream
channel reaches can be considered a very important advance‐
ment in hydrological modeling toward deriving suitable con‐
servation management scenarios.

Finally, the development and application of OMS‐J2K is
a significant step toward demonstrating the promise of the
OMS as a viable tool for the development and maintenance
of natural resource models. From the natural resources mod‐
eling viewpoint, environmental modeling frameworks such
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as OMS have the potential to: (1) enable easier long‐term
maintenance  and updating of model code (the complex and
convoluted code structures for most current natural resource
models do not facilitate maintainability); (2) reduce duplica‐
tion of work by modelers for developing common basic com‐
ponents, as has previously occurred with considerable
duplication of code in other watershed model development
efforts (e.g., SWAT, AnnAGNPS, etc.); and (3) lead to better
standardization  of science components over time.
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